資訊

上海

課程咨詢: 400-810-2680

預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓

獲取驗證碼

請選擇城市

  • 上海

請選擇意向校區(qū)

請選擇年級

請選擇科目

立即體驗
當前位置:北京學而思1對1 > 高中輔導 > 試卷下載 > 期中試卷 > 正文
內容頁banner-一對一體驗

2020-2021年北京西城高二下學期期中數學試卷及答案

2021-03-26 23:13:24  來源:網絡整理

 點擊領取>>>2016-2021北京各高中下學期期中試題及答案解析

  2020-2021年北京西城高二下學期期中數學試題及答案!高二的數學內容比高一的難,而且需要一些融會貫通才能取得優(yōu)異。下面小編就給大家準備了2020-2021年北京西城高二下學期期中數學試題及答案!希望對大家準備有所幫助哦!加油吧,各位小伙伴!

  2020-2021年北京西城高二下學期期中數學試題及答案暫未收錄,下面給大家提供往年試題,供大家參考訓練!

想了解更多2020-2021年北京西城高二下學期期中數學試題及答案

請撥打4000-121-121咨詢

 

 

點擊領取→獲取【完整版】2016-2021北京各校高二下學期期中試題及答案解析

部分資料截圖如下:

點擊鏈接領取完整版資料:https://jinshuju.net/f/bgu4qJ

 

 

  集合

  一、集合概念

  (1)集合中元素的特征:確定性,互異性,無序性。

  (2)集合與元素的關系用符號=表示。

  (3)常用數集的符號表示:自然數集;正整數集;整數集;有理數集、實數集。

  (4)集合的表示法:列舉法,描述法,韋恩圖。

  (5)空集是指不含任何元素的集合。

  空集是任何集合的子集,是任何非空集合的真子集。

  函數

  一、映射與函數:

  (1)映射的概念:(2)一一映射:(3)函數的概念:

  二、函數的三要素:

  相同函數的判斷方法:①對應法則;②定義域(兩點必須同時具備)

  (1)函數解析式的求法:

 、俣x法(拼湊):②換元法:③待定系數法:④賦值法:

  (2)函數定義域的求法:

  ①含參問題的定義域要分類討論;

 、趯τ趯嶋H問題,在求出函數解析式后;必須求出其定義域,此時的定義域要根據實際意義來確定。

  (3)函數值域的求法:

 、倥浞椒:轉化為二次函數,利用二次函數的特征來求值;常轉化為型如:的形式;

 、谀媲蠓(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;

 、軗Q元法:通過變量代換轉化為能求值域的函數,化歸思想;

 、萑怯薪绶:轉化為只含正弦、余弦的函數,運用三角函數有界性來求值域;

 、藁静坏仁椒:轉化成型如:,利用平均值不等式公式來求值域;

 、邌握{性法:函數為單調函數,可根據函數的單調性求值域。

 、鄶敌谓Y合:根據函數的幾何圖形,利用數型結合的方法來求值域。

  三、函數的性質:

  函數的單調性、奇偶性、周期性

  單調性:定義:注意定義是相對與某個具體的區(qū)間而言。

  判定方法有:定義法(作差比較和作商比較)

  導數法(適用于多項式函數)

  復合函數法和圖像法。

  應用:比較大小,證明不等式,解不等式。

  奇偶性:定義:注意區(qū)間是否關于原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數;

  f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數。

  判別方法:定義法,圖像法,復合函數法

  應用:把函數值進行轉化求解。

  周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。

  其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.

  應用:求函數值和某個區(qū)間上的函數解析式。

  四、圖形變換:函數圖像變換:(重點)要求掌握常見基本函數的圖像,掌握函數圖像變換的一般規(guī)律。

  常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯系起來思考)

  平移變換y=f(x)→y=f(x+a),y=f(x)+b

  注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經過平移得到函數y=f(2x+4)的圖象。

  (ⅱ)會結合向量的平移,理解按照向量(m,n)平移的意義。

  對稱變換y=f(x)→y=f(-x),關于y軸對稱

  y=f(x)→y=-f(x),關于x軸對稱

  y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關于x軸對稱

  y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關于y軸對稱。(注意:它是一個偶函數)

  伸縮變換:y=f(x)→y=f(ωx),

  y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。

  一個重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關于直線x=a對稱;

  點擊查看:高中數學知識點

  五、反函數:

  (1)定義:

  (2)函數存在反函數的條件:

  (3)互為反函數的定義域與值域的關系:

  (4)求反函數的步驟:①將看成關于的方程,解出,若有兩解,要注意解的選擇;②將互換,得;③寫出反函數的定義域(即的值域)。

  (5)互為反函數的圖象間的關系:

  (6)原函數與反函數具有相同的單調性;

  (7)原函數為奇函數,則其反函數仍為奇函數;原函數為偶函數,它一定不存在反函數。

     以上就是小編特意為大家整理的2020-2021年北京西城高二下學期期中數學試題及答案的相關內容,同學們在學習的過程中如有疑問或者想要獲取更多資料,歡迎撥打學而思愛智康免費電話: 更有專業(yè)的老師為大家解答相關問題!

 

想了解更多2020-2021年北京西城高二下學期期中數學試題及答案

請撥打4000-121-121咨詢

相關推薦:

2020-2021年北京朝陽高二下學期期中生物試題及答案

2020-2021年北京朝陽高二下學期期中政治試題及答案

 

文章來源于網絡整理,如有侵權,請聯系刪除,郵箱fanpeipei@tal.com

文章下長方圖-作文精選
立即領取中小學熱門學習資料
*我們在24小時內與您取得電話聯系
側邊圖-1對1寒假