掃描注冊(cè)有禮
讓進(jìn)步看得見(jiàn)
熱門(mén)課程先知道
預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓
1、勾股定理(畢達(dá)哥拉斯定理)
2、射影定理(歐幾里得定理)
3、三角形的三條中線交于一點(diǎn),并且,各中線被這個(gè)點(diǎn)分成2:1的兩部分
4、四邊形兩邊中心的連線的兩條對(duì)角線中心的連線交于一點(diǎn)
5、間隔的連接六邊形的邊的中心所作出的兩個(gè)三角形的重心是重合的。
6、三角形各邊的垂直一平分線交于一點(diǎn)。
7、從三角形的各頂點(diǎn)向其對(duì)邊所作的三條垂線交于一點(diǎn)
8、設(shè)三角形ABC的外心為O,垂心為H,從O向BC邊引垂線,設(shè)垂足不L,則AH=2OL
9、三角形的外心,垂心,重心在同一條直線上。
10、(九點(diǎn)圓或歐拉圓或費(fèi)爾巴赫?qǐng)A)三角形中,三邊中心、從各頂點(diǎn)向其對(duì)邊所引垂線的垂足,以及垂心與各頂點(diǎn)連線的中點(diǎn),這九個(gè)點(diǎn)在同一個(gè)圓上,
11、歐拉定理:三角形的外心、重心、九點(diǎn)圓圓心、垂心依次位于同一直線(歐拉線)上
12、庫(kù)立奇*大上定理:(圓內(nèi)接四邊形的九點(diǎn)圓) 圓周上有四點(diǎn),過(guò)其中任三點(diǎn)作三角形,這四個(gè)三角形的九點(diǎn)圓圓心都在同一圓周上,我們把過(guò)這四個(gè)九點(diǎn)圓圓心的圓叫做圓內(nèi)接四邊形的九點(diǎn)圓。
13、(內(nèi)心)三角形的三條內(nèi)角平分線交于一點(diǎn),內(nèi)切圓的半徑公式:r=(s-a)(s-b)(s-c)ss為三角形周長(zhǎng)的一半
14、(旁心)三角形的一個(gè)內(nèi)角平分線和另外兩個(gè)頂點(diǎn)處的外角平分線交于一點(diǎn)
15、中線定理:(巴布斯定理)設(shè)三角形ABC的邊BC的中點(diǎn)為P,則有AB2+AC2=2(AP2+BP2)
16、斯圖爾特定理:P將三角形ABC的邊BC內(nèi)分成m:n,則有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
大家都在看
限時(shí)免費(fèi)領(lǐng)取